
A Practical Introduction to CSCS HPC Infrastructure
CSCS User Lab Day, August 31st 2020
Luca Marsella, CSCS

 Policies and Resources
 Login Filesystems

 Development Environment Features of the hybrid system Programming Environment
 Job Submission and Monitoring Slurm workload manager Best practices
 Documentation and Troubleshooting How to submit a support request

2

Outline of the Presentation

CSCS office building in Lugano
A Practical Introduction to CSCS HPC Infrastructure

Policies and Resources

General Policies
The code of conduct outlines proper practices:• Access to Source Codes: you agree to make codes available for support• Scientific Advisory Committee: committee members must not be contacted• Acknowledgements: you must acknowledge the use of CSCS resources inall publications related to your production with reference to the “project ID ###”
User Regulations define basic guidelines:• Accounts are personal and sharing them is forbidden• Data ownership: access to and use of data of other accounts without priorconsent from the principal investigator is strictly prohibited• ETH Zurich Acceptable Use Policy for Telematics Resources (“BOT”)

Access to CSCS resources may be revoked to users violating the policies
4A Practical Introduction to CSCS HPC Infrastructure

Data Retention Policies
Data backup for active projects:• Data in users and project folders is backed up (past 90 days)• Data recovery is also possible with daily snapshots (past 7 days)• Data in project folders removed 3 months after the end of the project
As soon as a the project expires:• Data backup is disabled immediately• No data recovery after the final data removal
No backup for data in scratch:• No recovery in case of accidental data loss• No recovery of data deleted due to the cleaning policy

5A Practical Introduction to CSCS HPC Infrastructure

Fair Usage Policies
Slurm:• The job scheduler is a shared resource among users submitting jobs• Do not submit large numbers of jobs and commands at the same time• We will be forced to kill jobs and limit new submissions
Login nodes:• Running applications on login nodes is not allowed• Submit your simulations with the Slurm scheduler on compute nodes• Heavy processes running on login nodes will be terminated

6

Please check the summary of CSCS policies athttps://user.cscs.ch/access/accounting/#policies
A Practical Introduction to CSCS HPC Infrastructure

How to access the systems

7

You should have already obtained an account at CSCS
The front end Ela is accessible via ssh as ela.cscs.ch:

• It provides a minimal Linux environment• You can ssh the computing systems from Ela• You can start an External Data Transfer with GridFTP from/to CSCS

Please note the following:• No programming environments on the front end system• User scratch space is not directly accessible from Ela

$ ssh daint.cscs.ch

$ ssh ela.cscs.ch

A Practical Introduction to CSCS HPC Infrastructure

Filesystems

8

Soft quota:• Soft quota on Piz Daint to prevent excessive loads on the scratch filesystem• Quota reached: warning at submit time, no job submission allowed

/scratch(Piz Daint) /scratch(Clusters) /users /project /store
Type Lustre GPFS GPFS GPFS GPFS
Quota Soft quota1 M files None 50 GB/user500K files Maximum50K files/TB Maximum50K files/TB
Expiration 30 days 30 days Account closure End of theproject End of thecontract
Data Backup None None 90 days 90 days 90 days
Access Speed Fast Fast Slow Medium Slow
Capacity 8.8 PB 1.9 PB 160 TB 6.3 PB 5.0 PB

A Practical Introduction to CSCS HPC Infrastructure

/scratch filesystem
Fast workspace for running jobs:• Designed for performance rather than reliability• Cleaning policy: files older than 30 days deleted daily• No backup: transfer data after job completion
Performance of Piz Daint scratch (Lustre filesystem):• Soft quota on inodes (files and folders) to avoid large numbers of small files• Occupancy impacts performance:• > 60%: we will ask you to remove unnecessary data immediately• > 80%: we will free up disk space manually removing data
All CSCS systems provide a scratch personal folder:• the variable $SCRATCH on Piz Daint points to /scratch/snx3000/$USER

9A Practical Introduction to CSCS HPC Infrastructure

/users and /project filesystems
Shared parallel filesystems based on the IBM GPFS software:• Accessible from the login nodes using native GPFS client• Storage space for datasets, shared code or configuration scripts• Better performance with larger files (archive small files with tar)
Users are NOT supposed to run jobs here:• The emphasis is on reliability over performance• All directories are backed up with GPFS snapshots• No cleaning policy until 3-months after the end of the project
Environment variables pointing to personal folders:• $HOME points to /users/$USER• $PROJECT points to /project/<group_id>/$USER

10A Practical Introduction to CSCS HPC Infrastructure

Computing Resources
Computing time on Cray systems is accounted in node hours:• Resources are assigned over three-months windows• Quotas reset on April 1st, July 1st, October 1st and January 1st• Use thoroughly the quarterly compute budget within the time frame• Unused resources in the allocation periods cannot be recovered
Check your budget in the current allocation window:• Group usage - sbucheck• reports group usage across the various systems• Daily usage - monthly_usage• monthly_usage --individual usage per group member• Overview of resources with the Account and Resources Tool• Check the details on the dedicated page of the User Portal

11A Practical Introduction to CSCS HPC Infrastructure

Development Environment

Piz Daint Specifications
Model Cray XC50/XC40
XC50 Compute Nodes (Intel Haswell processor) Intel® Xeon® E5-2690 v3 @ 2.60GHz (12 cores,64GB RAM) and NVIDIA® Tesla® P100 16GB
XC40 Compute Nodes (Intel Broadwell processor) Intel® Xeon® E5-2695 v4 @ 2.10GHz (2 x 18 cores,64/128 GB RAM)
Login Nodes Intel® Xeon® E5-2650 v3 @ 2.30GHz (10 cores, 256GB RAM)
Interconnect Configuration Aries routing and communications ASICDragonfly network topology
Scratch capacity Piz Daint scratch filesystem: 8.8 PB

File Systems:• /project is mounted with read-only access on compute nodes
A Practical Introduction to CSCS HPC Infrastructure

• Comprehensive development environment tobuild GPU-accelerated applications
• compiler for NVIDIA GPUs• optimized math libraries• debugging and performance tools

• Features programming guides, usermanuals, API reference and onlinedocumentation to get started quickly
• NVIDIA developer portal:https://developer.nvidia.com/cuda-zone

14

NVIDIA CUDA Toolkit v10.1

NVIDIA Tesla P100 GPU Accelerator
A Practical Introduction to CSCS HPC Infrastructure

Cray Linux Environment 7.0 UP01
• Cray Linux Environment (CLE) is theoperating system on Cray systems
• CLE 7.0 UP01 is based on the SUSELinux Enterprise Server version 15
• CLE 7.0 UP01 software release isavailable on Piz Daint since Nov 2019
• Read more on the HPE Cray TechnicalDocumentation portal (pubs.cray.com)

15A Practical Introduction to CSCS HPC Infrastructure

Setting the Programming Environment
You should prepare the environment before running jobs:
• CSCS systems use the modules framework• The modules manage applications and libraries path• You can check currently loaded modules with module list
• Some modules are already loaded at login• The default environment on Piz Daint is PrgEnv-cray• The default architecture is XC50 (Intel Haswell): craype-haswell• You can browse the available modules with module avail
• You must adjust your target architecture (see sbucheck)• daint-gpu targets the XC50 (Intel Haswell and P100 Tesla GPUS)• daint-mc targets the XC40 (Intel Broadwell multicore)• These modules update the MODULEPATH

A Practical Introduction to CSCS HPC Infrastructure

Setting the Programming Environment
$ module switch PrgEnv-cray/6.0.5 PrgEnv-gnu
$ module load daint-gpu
$ module list
Currently Loaded Modulefiles:
1) modules/3.2.11.3 9) cray-libsci/19.06.1 17) dvs/2.12_2.2.151-7.0.1.1_5.6__g7eb5e703
2) gcc/8.3.0 10) udreg/2.3.2-7.0.1.1_3.9__g8175d3d.ari 18) alps/6.6.56-7.0.1.1_4.10__g2e60a7e4.ari
3) craype-haswell 11) ugni/6.0.14.0-7.0.1.1_7.10__ge78e5b0.ari 19) rca/2.2.20-7.0.1.1_4.9__g8e3fb5b.ari
4) craype-network-aries 12) pmi/5.0.14 20) atp/2.1.3
5) craype/2.6.1 13) dmapp/7.1.1-7.0.1.1_4.8__g38cf134.ari 21) perftools-base/7.1.1
6) cray-mpich/7.7.10 14) gni-headers/5.0.12.0-7.0.1.1_6.7__g3b1768f.ari 22) PrgEnv-gnu/6.0.5
7) slurm/19.05.3-2 15) xpmem/2.2.19-7.0.1.1_3.7__gdcf436c.ari 23) daint-gpu
8) xalt/2.7.24 16) job/2.2.4-7.0.1.1_3.8__g36b56f4.ari

$ module avail …

A Practical Introduction to CSCS HPC Infrastructure

18

Cray XC Programming Environment
• Cray XC PE 19.10 includes the Cray Developer Toolkit - CDT 19.10• non-default Programming Environments can be accessed with cdt modules
• The following products have been updated within this release:• Cray Compiling Environment - CCE• cce 9.0.2, cray-mpich 7.7.10, cray-libsci 19.06.1

• Cray Performance Measurement & Analysis Tools - CPMAT• Perftools 7.1.1
• Cray Environment Setup and Compiling support - CENV• cray-modules 3.2.11.3 and craype 2.6.1
• Third party products• GCC 7.3.0 and 8.3.0, cray-python 2.7.15.7 and 3.6.5.7, cray-R 3.4.2

A Practical Introduction to CSCS HPC Infrastructure

Amber/18-14-14-CrayGNU-19.10-cuda-10.1
Boost/1.70.0-CrayGNU-19.10-python3
CDO/1.9.5-CrayGNU-19.10
CP2K/6.1-CrayGNU-19.10-cuda-10.1
CPMD/4.1-CrayIntel-19.10
GROMACS/2018.6-CrayGNU-19.10-cuda-10.1
LAMMPS/22Aug18-CrayGNU-19.10-cuda-10.1
NAMD/2.13-CrayIntel-19.10-cuda-10.1
NCL/6.4.0
NCO/4.8.1-CrayGNU-19.10
ParaView/5.7.0-CrayGNU-19.10-EGL
QuantumESPRESSO/6.4.1-CrayIntel-19.10-cuda-10.1
VASP/5.4.4-CrayIntel-19.10-cuda-10.1

19

Main default modules for supported applications on Piz Daint
Amber/18-14-14-CrayGNU-19.10
Boost/1.70.0-CrayGNU-19.10-python3
CDO/1.9.5-CrayGNU-19.10
CP2K/6.1-CrayGNU-19.10
CPMD/4.1-CrayIntel-19.10
GROMACS/2018.6-CrayGNU-19.10
LAMMPS/22Aug18-CrayGNU-19.10
NAMD/2.13-CrayIntel-19.10
NCL/6.4.0
NCO/4.8.1-CrayGNU-19.10
ParaView/5.7.0-CrayGNU-19.10-OSMesa
QuantumESPRESSO/6.4.1-CrayIntel-19.10
VASP/5.4.4-CrayIntel-19.10
Visit/3.1.0-CrayGNU-19.10

For more details please check the User Portal at https://user.cscs.ch/computing/applications
A Practical Introduction to CSCS HPC Infrastructure

Job Submission and Monitoring

The Slurm workload manager

21

 Slurm is the batch system/scheduler running on CSCS machines
 Permits users to run jobs with specific settings
 Job submission by calling sbatch with a job script

#!/bin/bash -l#SBATCH --nodes=10#SBATCH --time=0:30:00#SBATCH --partition=normal#SBATCH --constraint=gpu[…]
srun myprogram

job.sh

$ sbatch job.sh

A Practical Introduction to CSCS HPC Infrastructure

Slurm jobscripts

22

https://user.cscs.ch/access/running/jobscript_generator/
Slurm Jobscript Generator

 Our web interface for generating job scripts covers most cases

 For a comprehensive list of all options please check $ man sbatch

A Practical Introduction to CSCS HPC Infrastructure

Slurm queues on Piz Daint

23

 Corresponding Slurm option: --partition
 Allows users to run jobs on different queues

Name of the queue Max time Max nodes Brief Description
debug 30 min 4 Quick turnaround for test jobs (one per user)
large 12 h 4400 Large scale work, by arrangement only
long 7 days 4 Maximum 5 long jobs in total (one per user)
low 6 h 2400(gpu)/512(mc) Up to 130% of project's quarterly allocation
normal 24 h 2400(gpu)/512(mc) Standard queue for production work
prepost 30 min 1 High priority pre/post processing
xfer 24h 1 Data transfer queue

More information at https://user.cscs.ch/access/running/piz_daint/#slurm-batch-queues
How to get started at CSSA Practical Introduction to CSCS HPC Infrastructure

Slurm queues (2)

24

 Watch your jobs in queues with

 Observe state of queues with
daint103:~$ sinfoPARTITION AVAIL JOB_SIZE TIMELIMIT CPUS S:C:T NODES STATE NODELISTdebug up 1-4 30:00 72 2:18:2 2 allocated nid00[448-449]debug up 1-4 30:00 24+ 1+:12+ 14 idle nid0[0008-0011,0450-0451,3508-3511,4276-4279]xfer up 1 1-00:00:00 9 9:1:1 2 idle nordend0[3-4]uftp up 1 1-00:00:00 0 0:0:0 0 n/acscsci up 1 1-00:00:00 24+ 1+:12+ 7 down$ nid0[0125,0299,3541-3543,4579,5967]cscsci up 1 1-00:00:00 24+ 1+:1+: 28 maint nid0[0124,0126,1144-1147,1804-1807,3492-3495,3576-

$ squeue -u ${USER}

$ sinfo -o"%P %.5a %.10l %.6D %.6t"

daint103:~$ squeue -u simbergmJOBID USER ACCOUNT NAME ST REASON START_TIME TIME TIME_LEFT NODES CPUS11942503 simbergm csstaff hpx-3662-gcc-7 R None 16:36:57 30:26 5:29:34 1 2411945966 simbergm csstaff hpx-3712-gcc-7 R None 16:44:24 22:59 5:37:01 1 7211947200 simbergm csstaff hpx-3229-clang PD BeginTime 17:34:15 0:00 6:00:00 1 111947180 simbergm csstaff hpx-3684-gcc-7 PD BeginTime Tomorr 00:19 0:00 6:00:00 1 1

A Practical Introduction to CSCS HPC Infrastructure

Job Priority

25

 Job priority is based on partition, fair share and waiting time: check it with
 Check the reason why a job is pending with the command
 Check your budget with the commandEven if you still have lots of hours left, there may be other users/accounts with lessusage and/or more hours allocated
 If the reason is “priority”, then you have to wait in the queue!
 Also, make sure there are no reservations in the system (maintenances, large runs,...):

$ scontrol show reservations

$ sbucheck

$ sprio -w

$ squeue -u ${USER}

A Practical Introduction to CSCS HPC Infrastructure

Good practices when submitting jobs

26

#!/bin/bash -l#SBATCH --nodes=120#SBATCH --time=0:30:00#SBATCH --partition=normal#SBATCH --constraint=gpu[...]

Specify accurate wall time #!/bin/bash -l#SBATCH --nodes=120#SBATCH --time=0:30:00#SBATCH --partition=normal#SBATCH --constraint=gpu
module load daint-mcmodule load GREASYgreasy -f greasy_tasks.list

For jobs with many steps, use greasy

#!/bin/bash -l#SBATCH --nodes=120#SBATCH --time=0:30:00#SBATCH --partition=normal#SBATCH --constraint=gpu#SBATCH --mail-type=ALL#SBATCH --mail-user=<your_email>
cd ${SCRATCH}srun ${SCRATCH}/my_binary

Run jobs off ${SCRATCH} #!/bin/bash -l#SBATCH --nodes=120#SBATCH --time=0:30:00#SBATCH --partition=normal#SBATCH --constraint=gpufunction p() {rt=$?;if [[${rt} -ne 0]]; thensleep 2fireturn ${rt}}srun mytask ; psrun mytask2 ; p

Make sure your srun commands work! (or sleep a little bit in between)

A Practical Introduction to CSCS HPC Infrastructure

What not to do when submitting jobs

27

#!/bin/bash#SBATCH ...while :dosrun sbatch my_job.sbatchsleep 1done

Jobs that submit other jobs/steps in loops

sacct -j 123456789 |wc -l25337
Jobs with thousands of steps

#!/bin/bash -l#SBATCH --nodes=3#SBATCH --time=0:30:00#SBATCH --partition=normal#SBATCH --constraint=gpu
export CRAY_CUDA_MPS=1cd $SLURM_SUBMIT_DIR
datesrun --nodes=1 --bcast=/tmp/${USER} --ntasks=1 --ntasks-per-node=1 --cpus-per-task=12tune_5x16x13_exe0 &srun --nodes=1 --bcast=/tmp/${USER} --ntasks=1 --ntasks-per-node=1 --cpus-per-task=12tune_5x16x13_exe1 &srun --nodes=1 --bcast=/tmp/${USER} --ntasks=1 --ntasks-per-node=1 --cpus-per-task=12tune_5x16x13_exe10 &[...]sleep 29m

Jobs with hundreds of steps in parallel

#!/bin/bash -l#SBATCH --nodes=120#SBATCH --time=0:30:00#SBATCH --partition=normal#SBATCH --constraint=gpu
srun ~/my_binary ~/Large_input

Jobs that run off ${HOME}

A Practical Introduction to CSCS HPC Infrastructure

What not to do on login nodes

28

$ make -j$ make -j8
GNU make without number of tasks

#!/bin/bashfor i in ${var}; dosbatch my_job.sbatchdone

Loops that depends on variables are worse!

#!/bin/bashwhile :doclearsqueue | grep JOBIDsqueue | grep ${USER}sleep 1done

Avoid infinite loops
$ squeue | grep ${USER}$ squeue -u ${USER}
squeue without filtering

$ watch squeue -u ${USER}
watch overloads the scheduler

$ watch sacct
sacct + watch: even worse!

#!/bin/bash -l#SBATCH --nodes=2#SBATCH --mail-type=ALL#SBATCH --mail-user=<your_email>

Use e-mail notification instead of loops withSlurm commands

A Practical Introduction to CSCS HPC Infrastructure

Summary: How to submit jobs at CSCS

29

 Move input data to $SCRATCH
 Use the jobscript generator and accurately specify runtime
 Monitor (manually) your jobs with
 Use Slurm e-mail notification for live-updates on jobstatus instead of repeated Slurm commands
 Copy important output data back to /project or /home

$ cd $SCRATCH$ cp -r ~/input .

$ squeue -u ${USER}

$ sbatch job.sh

A Practical Introduction to CSCS HPC Infrastructure

Documentation and Troubleshooting

❑ Search the content of the User Portal
❑ Check the Frequently Asked Questions
❑ Additional user documentation:

 module help
 man
 HPE Cray TechnicalDocumentation

31

What to do in case of trouble?

A Practical Introduction to CSCS HPC Infrastructure

 General info with module help
 module help PrgEnv-cray

 Product related details
 module help cce

 Command specific guidelines
 man craycc

 Advanced HPE Cray topics
 CCE 9.1 Usage

32

User Documentation

A Practical Introduction to CSCS HPC Infrastructure

Cray Documentation
 Cray man pages: Textual help files on the command line of Cray systems man command followed by the name of the man page Described on man(1) page accessible with man man
 HPE Cray Technical Documentation at http://pubs.cray.com

 Quick access and search of Cray books man pages and third-party documentation Available in HTML and PDF formats

33A Practical Introduction to CSCS HPC Infrastructure

• NVIDIA Documentation Portal• http://docs.nvidia.com
• Documentation on the system:

• module help cudatoolkit
• NVIDIA compiler• nvcc --help
• CUDA profiler• nvprof --help

34

NVIDIA Documentation

A Practical Introduction to CSCS HPC Infrastructure

Contact us if you can’t find a solution:
❑ Write an e-mail to help@cscs.ch
❑ Specify the system and your project ID in the subject
❑ Report the Slurm job ID and indicate the Slurm job script
❑ Copy scripts and source files to $SCRATCH and give us access

The more detailed the request, the more effective the reply!

35

How to submit a support request

A Practical Introduction to CSCS HPC Infrastructure

Template message to be adapted for help@cscs.ch

36

Example of a request for support

Subject: Slurm job failed on Piz Daint (project <project ID>)Content:
My username is <user name>, I submitted the job <job ID> on Piz Daint.
The job running <code name> exited with state FAILED but no error in output.
The job script (<script name>) and input files (<file list>) can be found here:

 /scratch/snx3000/$USER/job
 I have given read access with chmod –R +r $SCRATCH/job

Please let me know the reason of the failure.

A Practical Introduction to CSCS HPC Infrastructure

 CSCS User Portal
 https://user.cscs.ch

 HPE Cray Documentation
 https://pubs.cray.com

 NVIDIA Documentation
 https://docs.nvidia.com

 Contact us
 help@cscs.ch

37

Useful links

Piz Daint in the machine room at CSCS

A Practical Introduction to CSCS HPC Infrastructure

Thank you for your kind attention

