
Kokkos
CSCS User Lab Day
Mikael Simberg, CSCS
September 1, 2020

Table of Contents

1. Kokkos for performance portability

– Who, what, how

– The Kokkos ecosystem

2. Kokkos at CSCS

3. Conclusion

Insert_Footer 2

Motivation: Performance portability

● Multiple major GPU vendors on the market, multiple major CPU vendors
– All with slightly different runtimes and programming models

– Competition good

– Creates work for developers

● Major rewrites expensive, so make them count
– Kokkos is an attempt to let you rewrite only once

CSCS User Lab Day 2020 - Kokkos 3

What is Kokkos?

● Hierarchical data-parallelism, fine-grained tasking, and memory management on
OpenMP, HPX, CUDA, HIP, SYCL etc. in the form of a pure C++ library

● Single kernel implementation for all backends

● Not a compiler, compiler extension, or runtime in itself

● Established
– In development since 2012

– Developed at Sandia National Labs, heavy investment by US DOE

● Large ecosystem built on top of Kokkos
– Algorithms, tools, Trilinos

CSCS User Lab Day 2020 - Kokkos 4

Kokkos abstractions

CSCS User Lab Day 2020 - Kokkos 6

Credit: Kokkos Team

Example

Kokkos::View<int**> v(n, n);

Kokkos::parallel_for(

MDRangePolicy<Kokkos::Rank<2>>({0, 0}, {n, n}),

KOKKOS_LAMBDA(int i, int j) {

v(i, j) = i * j;

});

● View allocated on default device, reference counted

● Parallel for loop runs on default device

● View and MDRangePolicy use the appropriate access pattern for the device

CSCS User Lab Day 2020 - Kokkos 8

The Kokkos ecosystem

CSCS User Lab Day 2020 - Kokkos 9

Credit: Kokkos Team

Kokkos at CSCS

Applications and libraries using Kokkos at CSCS
● UTOPIA

– Non-linear solvers built on top of Trilinos (and PETSc)

– Nur Fadel and Andreas Fink at CSCS with Rolf Krause‘s group at USI

● MARS
– Mesh generation on GPUs using pure Kokkos

– Daniel Ganellari at CSCS together with Rolf Krause‘s group at USI

● SIRIUS
– Electronic structure code which mixes Kokkos with e.g. normal CUDA code

– Simon Pintarelli, Anton Kozhevnikov, and Mathieu Taillefumier at CSCS

● HPX
– Interoperability with the HPX runtime, coarse grained tasking using HPX and Kokkos

– John Biddiscombe, Auriane Reverdell, Mikael Simberg at CSCS together with LSU and Sandia
CSCS User Lab Day 2020 – Kokkos 11

UTOPIA

● C++ expression templates for non-linear algebra

● Can lazily build trees of operations which are specialized for various backends

● Trilinos backend (new) allows running on all backends supported by
Kokkos

CSCS User Lab Day 2020 – Kokkos 12

 Mesh Adaptive Refinement for Supercomputing
 C++ template meta-programming library using Kokkos
 The mesh is entirely constructed on the device (GPUs)
 Parallel mesh generation (3D) & AMR using LEPP (4D)
 Ex. 143 million Hex8 elements generated on a GPU node in only 0.86 sec
 Mesh management using Space Filling Curve algorithms, Morton z-curve

13

MARS

MPI-Kokkos (CUDA & OpenMP) Mesh Generation Weak Scaling and Efficiency

nlcglib: Non-linear CG algorithms for wave function optimization in
ensemble DFT
● Solver plugin for SIRIUS and QuantumESPRESSO

● Contains wrappers for cublas, cusolver, BLAS/LAPACK

● Optimization coefficients stored in Kokkos views

● Unmanaged views to interface data with SIRIUS

● Certain operations performed with Kokkos parallel algorithms

● Simple use of Kokkos, but shows importance of interoperability

CSCS User Lab Day 2020 – Kokkos 14

HPX

● HPX is closely aligned with the C++ standards for concurrency and parallelism
– Provides a runtime with lightweight threads, async, futures, and parallel algorithms

– Does not have good support for accelerators

● Interoperability
– Kokkos has an HPX backend

– Working on executors that forward to Kokkos execution spaces

● Standardized and user-friendly API of HPX, portability of Kokkos
– HPX futures for synchronization

– Kokkos kernels for bulk work

– Combined give a way to create DAGs of operations, potentially increasing utilization of devices

CSCS User Lab Day 2020 – Kokkos 15

Conclusion

Conclusion

● Kokkos is a C++ performance portability library: avoid having to rewrite
algorithms and applications for every new runtime and architecture

● Used at CSCS both in applications and libraries

● Repository: https://github.com/kokkos/kokkos

● Kokkos lecture series a good in-depth resource (last lecture on Friday, but
recordings and slides available):
https://www.exascaleproject.org/event/kokkos-class-series/

● Questions?

CSCS User Lab Day 2020 – Kokkos 17

